149 research outputs found

    Deterministic submanifolds and analytic solution of the stochastic differential master equation describing a qubit

    Get PDF
    This paper studies the stochastic differential equation (SDE) associated to a two-level quantum system (qubit) subject to Hamiltonian evolution as well as unmonitored and monitored decoherence channels. The latter imply a stochastic evolution of the quantum state (density operator), whose associated probability distribution we characterize. We first show that for two sets of typical experimental settings, corresponding either to weak quantum non demolition measurements or to weak fluorescence measurements, the three Bloch coordinates of the qubit remain confined to a deterministically evolving surface or curve inside the Bloch sphere. We explicitly solve the deterministic evolution, and we provide a closed-form expression for the probability distribution on this surface or curve. Then we relate the existence in general of such deterministically evolving submanifolds to an accessibility question of control theory, which can be answered with an explicit algebraic criterion on the SDE. This allows us to show that, for a qubit, the above two sets of weak measurements are essentially the only ones featuring deterministic surfaces or curves

    Accelerating Consensus by Spectral Clustering and Polynomial Filters

    Get PDF
    It is known that polynomial filtering can accelerate the convergence towards average consensus on an undirected network. In this paper the gain of a second-order filtering is investigated. A set of graphs is determined for which consensus can be attained in finite time, and a preconditioner is proposed to adapt the undirected weights of any given graph to achieve fastest convergence with the polynomial filter. The corresponding cost function differs from the traditional spectral gap, as it favors grouping the eigenvalues in two clusters. A possible loss of robustness of the polynomial filter is also highlighted

    Control limitations from distributed sensing: theory and Extremely Large Telescope application

    Full text link
    We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope.Comment: submitted to Automatic

    Synchronization with partial state coupling on SO(n)

    Full text link
    This paper studies autonomous synchronization of k agents whose states evolve on SO(n), but which are only coupled through the action of their states on one "reference vector" in Rn for each link. Thus each link conveys only partial state information at each time, and to reach synchronization agents must combine this information over time or throughout the network. A natural gradient coupling law for synchronization is proposed. Extensive convergence analysis of the coupled agents is provided, both for fixed and time-varying reference vectors. The case of SO(3) with fixed reference vectors is discussed in more detail. For comparison, we also treat the equivalent setting in Rn, i.e. with states in Rn and connected agents comparing scalar product of their states with a reference vector.Comment: to be submitted to SIAM Journal on Control and Optimizatio

    Robust open-loop stabilization of Fock states by time-varying quantum interactions

    Get PDF
    A quantum harmonic oscillator (spring subsystem) is stabilized towards a target Fock state by reservoir engineering. This passive and open-loop stabilization works by consecutive and identical Hamiltonian interactions with auxiliary systems, here three-level atoms (the auxiliary ladder subsystem), followed by a partial trace over these auxiliary atoms. A scalar control input governs the interaction, defining which atomic transition in the ladder subsystem is in resonance with the spring subsystem. We use it to build a time-varying interaction with individual atoms, that combines three non-commuting steps. We show that the resulting reservoir robustly stabilizes any initial spring state distributed between 0 and 4n+3 quanta of vibrations towards a pure target Fock state of vibration number n. The convergence proof relies on the construction of a strict Lyapunov function for the Kraus map induced by this reservoir setting on the spring subsystem. Simulations with realistic parameters corresponding to the quantum electrodynamics setup at Ecole Normale Superieure further illustrate the robustness of the method

    Contraction and stability analysis of steady-states for open quantum systems described by Lindblad differential equations

    Full text link
    For discrete-time systems, governed by Kraus maps, the work of D. Petz has characterized the set of universal contraction metrics. In the present paper, we use this characterization to derive a set of quadratic Lyapunov functions for continuous-time systems, governed by Lindblad differential equations, that have a steady-state with full rank. An extremity of this set is given by the Bures metric, for which the quadratic Lyapunov function is obtained by inverting a Sylvester equation. We illustrate the method by providing a strict Lyapunov function for a Lindblad equation designed to stabilize a quantum electrodynamic "cat" state by reservoir engineering. In fact we prove that any Lindblad equation on the Hilbert space of the (truncated) harmonic oscillator, which has a full-rank equilibrium and which has, among its decoherence channels, a channel corresponding to the photon loss operator, globally converges to that equilibrium.Comment: Submitted (10 pages, 1 figure

    String Stability towards Leader thanks to Asymmetric Bidirectional Controller

    Get PDF
    This paper deals with the problem of string stability of interconnected systems with double-integrator open loop dynamics (e.g.~acceleration-controlled vehicles). We analyze an asymmetric bidirectional linear controller, where each vehicle is coupled solely to its immediate predecessor and to its immediate follower with different gains in these two directions. We show that in this setting, unlike with unidirectional or symmetric bidirectional controllers, string stability can be recovered when disturbances act only on a small (NN-independent) set of leading vehicles. This improves existing results from the literature with this assumption. We also indicate that string stability with respect to arbitrarily distributed disturbances cannot be achieved with this controller.Comment: Version 2 corrects a typo in the proof, and adds the proof of stability before string stability. Slightly longer than published versio

    Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator

    Get PDF
    We prove that a harmonic oscillator driven by Lindblad dynamics where the typical drive and loss channels are two-photon processes instead of single-photon ones, converges to a protected subspace spanned by two coherent states of opposite amplitude. We then characterize the slow dynamics induced by a perturbative single-photon loss on this protected subspace, by performing adiabatic elimination in the Lindbladian dynamics.Comment: submitted to IEEE-CDC 201

    Adding a single state memory optimally accelerates symmetric linear maps

    Get PDF
    International audiencePrevious papers have proposed to add memory registers to the dynamics of discrete-time linear systems in order to accelerate their convergence. In particular, it has been proved that adding one memory slot per agent allows faster convergence towards average consensus. We here prove that this situation cannot be improved by adding more memory slots, when the knowledge about the self-adjoint linear map to be accelerated reduces to bounds on its extreme eigenvalues
    • …
    corecore